The Kirchhoff Index of Hypercubes and Related Complex Networks
نویسندگان
چکیده
The resistance distance between any two vertices of G is defined as the network effective resistance between them if each edge of G is replaced by a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all the pairs of vertices in G. We firstly provided an exact formula for the Kirchhoff index of the hypercubes networks Q n by utilizing spectral graph theory. Moreover, we obtained the relationship of Kirchhoff index between hypercubes networks Q n and its three variant networks l(Q n ),
منابع مشابه
Kirchhoff Index as a Measure of Edge Centrality in Weighted Networks: Nearly Linear Time Algorithms
Estimating the relative importance of vertices and edges is a fundamental issue in the analysis of complex networks, and has found vast applications in various aspects, such as social networks, power grids, and biological networks. Most previous work focuses on metrics of vertex importance and methods for identifying powerful vertices, while related work for edges is much lesser, especially for...
متن کاملComputing the additive degree-Kirchhoff index with the Laplacian matrix
For any simple connected undirected graph, it is well known that the Kirchhoff and multiplicative degree-Kirchhoff indices can be computed using the Laplacian matrix. We show that the same is true for the additive degree-Kirchhoff index and give a compact Matlab program that computes all three Kirchhoffian indices with the Laplacian matrix as the only input.
متن کاملThe Laplacian Polynomial and Kirchhoff Index of the k-th Semi Total Point Graphs
The k-th semi total point graph of a graph G, , is a graph obtained from G by adding k vertices corresponding to each edge and connecting them to the endpoints of edge considered. In this paper, a formula for Laplacian polynomial of in terms of characteristic and Laplacian polynomials of G is computed, where is a connected regular graph.The Kirchhoff index of is also computed.
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملOn Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs
Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...
متن کامل